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ABSTRACT

Activity classification is a task where we need to identify a
sequence of gestures for a period of time. It is a challenging
task without visual cues and only based on hand movements.
There are several applications of activity classification without
visual cues in science and technology, and in this paper we
propose a solution based on EMG and IMU features from Myo
Gesture Control Armband. We try to capture the temporal
features of different hand gestures in multiple ways and apply
machine learning and new deep learning techniques. Our
approach is very promising and we are able to distinguish
Eating activity from other activities with 94.76% accuracy.
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INTRODUCTION

Gesture recognition have been a difficult task for automated
systems in the past. But with the developments of gadgets
to measure different features needed for the task, have paved
the way for successful gesture recognition. electromyogra-
phy(EMG) helps to monitor the health of muscles and nerve
cells controlling them. Inertial measurement units(IMU)
records data for bodily functions. Gadgets like myo wrist
bands measures exactly same kinds of data from which vari-
ous bodily gestures can be recognized with proper machine
learning techniques.

However any kind of gesture recognition from various parts of
our body can be a tricky task and it needs proper devices. So
we focus on a smaller subset of the problem with hand gesture
recognition task. The Myo gesture control armband can collect
all the necessary kinds of data needed for the purpose.

Again, there can be multiple kinds of hand gestures which can
be seen while performing different kinds of activities. Some of
the activities like eating and brushing can have similar kinds of
muscle tension(EMG) data but may have different orientations
which is recorded by IMU data. So it is essential to use both
kinds of data to recognize an activity.

We worked on a particular subset of all such activities, to
simplify the close similarities between many similar activities.
Our work uses both the electromyogram and inertial measure-
ment units to classify eating and non-eating gestures as each
of the gestures are very much different from the other.

RELATED WORKS

There have been a number of works in hand gesture recog-
nition using only EMG data[12]. Some researchers used ar-
tificial neural network[3] on EMG data to recognize hand
motion while others have used unsupervised learning[5] for
the same purpose. Apart from EMG data, some have used
simple LSTM on IMU sensor data to recognize human activ-
ity [2]. Some other works like gesture recognition across all
devices[11] along with eating and drinking gestures by body
worn devices[1] and food intake gesture monitoring system
based-on depth sensor [4] are also noteworthy. Apart from eat-
ing gestures, some other works like applying gesture of hand
exercises for Post-Stroke Rehabilitation using myo band [14],
recognizing grasped object via forearm electromyograpy data
[8] and body activity tracking using wearable accelerometer[7]
are also related to our work.
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The following sections cover each component of our overall
system.

DATA ACQUISITION

First step towards performing activity classification is the data
collection as machine learning models relies on significant
data to derive inference from data patterns. Each member in
our team wore the Myo Gesture Control Armband (referred to
as myo device for the convenience in all subsequent sections)
at the muscular area under elbow for two days. The arm
band is paired with an android device using Bluetooth which
records armband data every 5 minutes into files. Myo device
collects data about human gestures through two embedded
devices- EMG and IMU. EMG records the electrical activity
produced by skeletal muscles roughly every 2 ms which is 1x8
sized integer tensor. Whereas, IMU measures body ‘s specific
force, angular rates using a combination of accelerometers



and gyroscopes as a 1x10 sized real tensor every 15-25ms.
Data for both devices are logged with respective unix epoch
timestamp format.

DATA PREPROCESSING

There are several possible reasons which results in malformed
data collection such as loosened arm band, data logging dis-
crepancies, bluetooth connection errors etc. Therefore, it is
necessary to clean up such erroneous data samples in order to
avoid adversarial impact of such data while learning process
of a model. We incorporated two major steps here- removal of
datapoints which contains missing (NaN) values and process-
ing of malformed/incomplete data recordings. After this step,
we have prepared the data in a structured format which will be
processed through the proposed computing pipeline to train
the machine learning models for activity classification which
we are taking into consideration.

DATA BLENDING

Both the IMU and EMG data have been used for the purpose
of eating activity recognition. Although same numbers of files
are generated of each type with a particular time epoch, the
data logged individually are of varying time-stamp. Since
we plan on working with individual time-stamps logged in
those files rather than the file level, we used an aggregation
interval of one second time-frame for our work. This helped
us to blend both IMU and EMG data together in a particular
time-frame. We aggregated all the data across all 18 sensor
readings using simple mean. A detailed Feature Analysis is
present in the Appendix Section of the paper.

FEATURE GENERATION

For the statistical models, two types of features are used. First,
the raw data generated by the sensors that is eight features
from EMG and ten features from IMU data are used after
preprocessing and blending. Second, we generated features
by concatenating raw sensor data for a continuous time-frame
of 5s, 15s, 60s each. This helps us to keep the temporal
information of the sensor data.

FEATURE SELECTION
For the statistical machine learning algorithms we attempted
two feature selection approaches.

All raw features
In this approach we kept all the features we generated.

L1 Distance Based Feature selection
We used model based feature selection techniques. The model
we chose is linear Support vector classifier with L1 distance.

Tree-based Feature selection
In this model based feature selection techniques we used Extra
tree classifier with 50 estimators as parameters.

DATASETS

We created two types of datasets for each of three time-
intervals of 5s, 15s and 60s on which ran our statistical models.
First a balanced dataset is created by taking as many non-
eating gesture samples as there are eating gesture samples for

the raw sensor data. There were 3181 eating gesture samples
in our dataset. So the balanced dataset is of size 6362. An
unbalanced dataset is also prepared with size 77670 with ex-
tra non-eating gesture samples which were not present in the
balanced dataset.

MODELS

Statistical Machine Learning Models
Among the statistical machine learning models we used the
following basic models with the various dataset prepared.

e Support Vector Machines (SVM)
We used SVM with linear, polynomial and radial-basis func-
tion kernels for our experiments.

¢ Random Forest
This is an ensemble model with decision tree classifier as
base weak classifier.

o XgBoost
Extreme Gradient boosting algorithm as defined in [6]. We
use gbdt as weak classifiers.

e LightGBM
Another Gradient boosting algorithm as defined in [10]. We
use the default gbdt as weak classifiers.

o Logistic Regression
We performed grid search to obtain optimal parameters,
used them as argument to Logistic Regression function.

o Gaussian Process Classifier (GPC)
GPC is a classifier based on Laplace approximation to get
estimated value of non-Gaussian posterior by a Gaussian.

Deep Learning Models:

Since an event, like eating food, that occur in certain times
of the day can depend on both short and long-term physical
habits (for example, exercising might trigger the craving for
food sooner than the regular time of meal), it will be wise to
consider the temporal dependency aspect of the data as well.
In other words, constructing the dataset in a time-distributed
fashion will prove beneficial for capturing these temporal cor-
relations. Prior research on time-series data [9],[13] suggests
that along with identifying temporal correlations between dif-
ferent time-steps, capturing links between pairs of time series
(spatial) is also essential to draw inference from a multi-variate
time-series data. Therefore, in this section, we formulate
methodologies that take both temporal and spatio-temporal
aspects into consideration.

e LSTM
Long Short-Term Memory (LSTM) shares resemblance
with a recurrent neural network, (RNN) architecture uti-
lized in deep-learning. Unlike standard fully-connected
feed-forward neural networks, LSTM has feedback con-
nections, using which it can not only process single data
points, but also a sequences of data instances, such as audio
signals, power-grid PMU data, etc. An LSTM unit com-
prises of a cell, an input gate, a forget gate and an output
gate. The cell memorizes values over arbitrary time inter-
vals, while the three gates controls the information flow in



and out of the cell. Since there are possibilities of lags of
unknown duration between significant events in time series,
LSTM networks are well-suited for such tasks. Relative
insensitivity to gap length is an advantage of LSTMs over
Recurrent Neural Networks, Hidden Markov models and
other sequence learning methods in many tasks.

Attention-based Convolutional LSTM (Conv-LSTM)
ConvLSTM [15] is a deep learning architecture used when
an application needs to capture spatio-temporal information
in a time-series data, such as video sequence. However,
the performance of Conv-LSTM is observed to deteriorate
as the sequence length grows. To tackle this performance
bottleneck, [16] developed an attention mechanism based
Conv-LSTM which can adaptively select relevant hidden
states (feature maps) across different time steps. Motivated
by their work, we formulated a Conv-LSTM architecture
that is augmented with attention layers. These layers assign
greater priorities to relevant features discriminant for the
classification problem.

We formulated the task of prediction as: every label Y; (eat-
ing/ non eating) of a specific profile is predicted using a
series of X vectors < Xy, s Xs—wia—1 s Xs > With Wyqy
being the largest time-frame of monitoring. The dataset,
thus constructed, can be easily modified using feature rep-
etitions for each volunteer to meet this purpose. Specifi-
cally, to capture the spatial information from n time-series,
we construct feature-affinity matrices by utilizing pairwise
inner-product of two time series within a variable time-
frame w. To elaborate further, for two time-series x}" =
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Transforming features representations in this technique not
only aids in Convolutional-Neural-Network processing, but
also ensures that small-scale noise perturbations, that are
not representative of human actions, exhibit lesser impact
on the prediction mechanism. Additionally, framing the
input features in this pattern bolsters capturing the com-
pound effects of spatial, as well as temporal correlations.
In order to characterize multi-scale feature information, we
work with multiple value of w (w =2,4,6 and consequently,
Wnax = 6), thereby producing three feature-affinity matrices
for each instance of a prediction label.

Attention-based Prediction Model:

Given 1048 IMU and EMG features at each time instance,
the inputs to our model are 18 x 18 x 4 affinity matrices.
On the constructed matrices, a convolutional encoder is
employed to encode the spatial patterns. An encoder ar-
chitecture generally comprises of a series of convolutional
and max pooling layers, with increasing number of filters
at each convolution operation. Scaled Exponential Linear
Unit (SELU) is used as the activation function in each con-
volutional block. Filtering temporal information from the

spatial encodings of the convolutional layers is achieved
via Convolutional-LSTMs. This is followed by an adaptive
choosing of relevant hidden steps 4, of the LSTMs that aid
to form a refined output of informative feature maps. This
is done by adding a temporal attention mechanism. We
follow a variant of Zhang et. al.’s work [16] where the
group-level context vector (the last hidden state) is used in
a softmax function to compute the influence weights o of
previous hidden states. Using these weights, aggregation
of the informative feature maps are performed to generate
refined output of features. The output feature map of every
attention layer is concatenated with the feature maps of
the previous layer. Finally, final concatenated feature map
is passed to subsequent convolutional and fully-connected
layers and a soft-max is performed over the outputs of the
last layer. We use categorical cross-entropy loss to train our
model over the supervised dataset and perform end-to-end
learning. The efficacy of prediction can be measured using
percentage of accuracy. A schematic diagram of the model
is given in figure 4.

EXPERIMENTS

Statistical Machine Learning-Based Approaches

For the statistical machine learning algorithms we used accu-
racy, precision, recall and Fl1-measure as evaluation metric.
We also represented the results of the binary classifier by its
confusion matrix. We trained the classifiers on balanced data
and tested on both balanced and unbalanced data. The in-
tention that the model should learn to classify between both
eating and non-eating data samples better with the balanced
set and also learn to generalize on the bigger unbalanced data.

Balanced Dataset

Model Raw | 5s 15s 60s
SVM 87.17 | 83.24 | 85.18 | 85.28
Random Forest 84.23 | 83.97 | 85.18 | 88.48

Logistic Regression | 68.52 | 67.89 | 67.57 | 68.52
Gaussian Process 87.48 | 79.78 | 79.61 | 85.61
XGBoost 89.31 | 92.46 | 93.19 | 94.76
LightGBM 89.47 | 93.03 | 93.92 | 93.92

Unalanced Dataset

Model Raw | 5s 15s 60s
SVM 85.39 | 88.83 | 79.02 | 77.27
Random Forest 81.13 | 87.58 | 87.46 | 88.72

Logistic Regression | 65.25 | 66.49 | 67.11 | 68.67
Gaussian Process 85.21 | 77.61 | 76.98 | 86.50
XGBoost 89.95 | 93.51 | 93.17 | 95.35
LightGBM 89.95 | 93.83 | 93.68 | 93.88

Table 1. The evaluation scores of various statistical machine learning
models for both balanced and unbalanced test data (All values are in %)

The results of our experiments with statistical models can be
seen from the table 1 It can be seen that Support Vector, Gaus-
sian Process and Random Forest classifiers works well(~85 %)



across all the four types of data that we created for both bal-
anced and unbalanced set. The decent performance can be
attributed to the discriminatory features which we have plot-
ted in Appendix. On the other hand the logistic regression is
performing poorly with on ~65% on average over all the data.
However we have achieved much better accuracy(~95%) with
boosting since it uses separate weak classifiers fitted across
various features internally. XGBoost outperforms all the sta-
tistical models across both the balanced and unbalanced data
having temporal relations for 60s. This shows that the eating
actions are well identified over a longer time interval. The
confusion of the best statistical model have been provided on
both the balanced(Figure 2) and unbalanced(Figure 3) dataset.

Confusion matrix, without normalization
900

800
700
600

MNon-Eat

- 500

True label

400
- 300
Eat
- 200

r 100

L
G <¢_'l§"

Predicted label

Figure 2. XGBoost (best performing statistical machine learning
method) confusion Matrix on Test data from Raw balanced dataset
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Figure 3. XGBoost (best performing statistical machine learning

method) confusion Matrix on Test data from Raw unbalanced dataset

Deep-Learning-Based Approaches
For the deep-learning-based approaches we reported accuracy,
precision, recall and F1-measure as metric. We also plotted

the confusion matrices of some experiments with the binary
classifiers. As deep learning algorithms require large amount
of data to train, We trained and tested the classifiers on both
balanced and unbalanced data. Similar to the motivation high-
lighted when experimenting with statistical-machine learning
approaches, we went further to investigate whether the mod-
els learn to classify between both eating and non-eating data
samples better with the balanced set and whether they can
generalize the same on the bigger unbalanced data.

The layers used in building attention-based Conv-LSTM
model are given sequentially as follows: 64 3 x 3 Conv-
LSTMS with stride 1 x 1, max pooling with stride 2 x 2, 128
3 x 3 Conv-LSTMS with stride 1 x 1, max pooling with stride
2 x 2,256 3 x3 Conv-LSTMS with stride 1 x 1, attention
layer, 5 1-dimensional convolutions of 512 3 x 3 filters, inter-
leaved with max-pooling layers with filter size 2 x 2. This is
followed by a fully-connected layer. The last layer produces
a softmax output. Categorical cross-entropy is used as the
loss function. Each model is trained for 80 epochs using a
train-test split of 30%. The validation size was set to 20% of
the training set.

From the experiments, it was noticed that DL models faced
difficulties to generalize from scarce data. The training accu-
racy varied within range 96 to 99.8% for all the models, while
the testing accuracies dropped considerably. Furthermore, the
precision recall and F1-score were reasonably low for both
the models when trained and tested on unbalanced data. One
reason for this is the models learn to predict the majority class
(true negative, in this case) frequently, thereby maintaining
the accuracy, but affecting the remaining metrics (refer tables
2 and figures 5,6. In order to mitigate this issue, we trained
our models on balanced dataset, but to no avail- the prediction
accuracies over the test set were badly affected (ranging be-
tween 65-70%) even when the training accuracies were within
97-99.8%. To reduce overfitting, we introduced regularizers
to the CNN and LSTM models, but it reduced the accuracies
further. A major problem that was highlighted during the ex-
periments were that the volume of data played a major role in
data overfitting. Therefore, in order to improve the general-
ization power of the proposed models, a sophisticated dataset
with large number of data instances are required.

Balanced Dataset

DL Model Config Accur | Preci | Recall | F1

LSTM T=6,N=20 | 89% .87 .90 .89

ConvLSTM T=4 80% 79 .81 .80

Unbalanced Dataset

DL Model Config Accur | Preci | Recall | F1
LSTM T=6,N=20 | 97% 78 49 .60

ConvLSTM T=4 96% .55 .58 .57

Table 2. The evaluation scores of LSTM and Conv-LSTM model for both
balanced and unbalanced test data for different values of time frames (T)
and sizes of the cell (N) state.
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Figure 5. LSTM (best performing deep learning method) confusion Ma-
trix on Test data from balanced dataset (T=6 and N=20).
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Figure 6. LSTM (best performing deep learning method) confusion Ma-
trix on Test data from unbalanced dataset (T=6 and N=20)

CHALLENGES & LIMITATIONS
There were many challenges in correctly recognizing the eat-
ing gestures.

e People tend to do some unavoidable tasks during eating
which obfuscate the original unique gestures of eating.

e The data we collected have 50% of eating gestures of left-
handed candidates. So the patterns of data we collected
for the left-handed candidates vary with those of the right-
handed candidates.

e Also there were challenges like bluetooth connections get-
ting disconnected and data collected needed proper cleans-
ing which led to elimination of few data. This in turn lead
to the loss of temporal coherence of data for which perfor-
mance of our convolutional LSTM model got hampered.

e We collected data for two days which involved only five-six
eating activities per person. With such a limited amount
of data is very hard to train the deep neural models like
traditional LSTMs and convolutional LSTMs.

COMPLETION OF TASKS

Sr. | Task Assignee | %
1 Data Collection All 5%
2 Data Preprocessing All 10%
3 Correlation Analysis All 10%
5-9 | Feature Engineering All 15%

SML Models Implementation
- Model Selection

10-14 | - Model Preparation All 30%
- Hyperparameter Tuning

- Accuracy/Error Analysis
Deep Models Implementation
- Model Selection

15-19 | - Model Preparation All 25%
- Hyperparameter Tuning
- Accuracy/Error Analysis
20 | Final code & Report All 5%

Member Contribution:
Kuntal (25%), Pratyay (25%),

Sandipan(25%), Shailaja (25%)

Table 3. Task completion
*HEREBY WE AGREE THAT ALL TEAM MEMBERS HAVE
EQUAL CONTRIBUTION FOR THIS PROJECT

CONCLUSION AND FUTURE WORKS
The eating gesture recognitions get extremely hard if data
quality and quantity requirements are not met. This is because



the need of precise distinction and relation between the data.
So in our future work we intend to gather more data to balance
eating and non-eating time-frames which we hope would im-
prove our classification tasks. We would also like to use other
preprocessing techniques to extract extra features which is
essential for statistical models. We wish to precisely annotate
the samples in time boundaries, that is the time-frames where
the eating starts and where it ends which would improve the
precision and recalls of our models.
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APPENDIX

FEATURE SET VISUALIZATION

EMG Feature Set Visualization
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Figure 7. Visualization of 8 EMG Features: red values denote non-eating activity, whereas blue denote eating activity.



IMU Feature Set Visualization
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Figure 8. Visualization of 10 IMU Features: red values denote non-eating activity, whereas blue denote eating activity.
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