Constructing Flow Graphs from Procedural Cybersecurity Texts

Kuntal Kumar Pal*, Kazuaki Kashihara*, Pratyay Banerjee*,

Swaroop Mishra, Ruoyu Wang, Chitta Baral

Motivation

- **Challenges** of procedural texts written in free natural language form
 - Hard to follow,
 - Difficult to visualize interactions between sentences
 - Difficult to extract inferences
 - Hard to track states of an object or a sub-task

- **Goal** : Provide flow-structures to free form natural language texts
 - *Cybersecurity(CTFW)*, Cooking instruction(COR), maintenance manual domains(MAM)

- **Flow-Structure** of the Procedural Text:
 - Sentence level dependencies leading to a goal (action traces, effects of an action, information leading to the action, and instruction order)

Flow-Structure Example

• CTFW (3154) (New dataset)

- Cybersecurity write-ups from Catch The Flag (CTF) competitions
- Participants find and exploit vulnerabilities in a given set of software services
- They publish the details of how they exploited the services

- S_1, S_3, S_4 : Author's observation about nature of service
- S_5, S_6 : possible courses of action
- S_6 , S_7 , S_8 : chosen path to exploit the vulnerability
- S_0, S_2 : Irrelevant information

S ₀	Shopping (Pwn, 352p, 90 solved). A bit of an overstatement to call this pwn.						
S1	After passing some PoW we get access to a black-box shopping service						
S2	Welcome to Ekoparty shopping Center. Feel free to buy up to 5 items that you may like. Use wisely your coins, have fun! You have 50 coins. What do you wanna buy today?						
S3	If we select an item and quantity it will subtract price*quantity from our coins if we had enough.						
S4	✓ The trick here is to notice that we can pass 0 or even negative numbers as quantity, and the application doesn't check it.						
S 5	If we pass a negative number it will give us coins.						
S6	But we don't even need that much, we can just buy 0 or -1 flags and it will						
	be enough.						
67							
3/	we full .						
	¥						
S8	import nc send, interactive return data						
	↓						
S9	and we get EKO{d0_y0u_even_m4th?}						
	None Action Information Both Code						

CTFW Dataset

• How structure helps in cybersecurity ?

- Automated Vulnerability Discovery and mitigation
- Automated Exploit generation,
- Security education in general

• Annotations:

- Sentence Type : Action (A), Information (I), Both (A/I), Code (C), None.
- Flow-Structure : Connection between a pair of sentences based on the interaction between them

Flow-Structure Generation Approach

Segment Document to Sentences

- Rule-based segmentation into sentences
- Relevant sentence identification
- $\bigcirc \qquad \mathsf{Di} = \{ \mathsf{S0}, \, \mathsf{S1}, \, \mathsf{S2...Sn-1} \}$

Graphical Representation of Document

- Each relevant sentence as a graph node
- Sentence Windowing (W_N) where N = {3, 4, 5, all}
- Graph Connections are directed edges from S_i to S_i where i < j.
- \circ In each window,
 - *Linear* : S_i to S_{i+1}
 - Semi-Complete : S_i to $\{S_{i+1}, \dots, S_{i+N}\}$

Approach (Contd.)

• Node Feature learning

- Initial Node features from BERT/ RoBERTa
- \circ h_{Si} = BERT ([CLS]s₀s₁...s_{n-1} [SEP])

• Neighbor-aware node feature learning

- GCN and GAT learns richer node representations through message passing
- Linear connections learn from its predecessors
- Semi-Complete connections learn based on all the previous nodes in a Window

Experiments - Sentence Classification Baseline

Model	Val	Test
BERT-Base	$78.48 {\pm} 0.25$	77.42 ± 0.10
BERT-Large	$78.19 {\pm} 0.48$	77.13 ± 0.20
RoBERTa-Base	$78.85 {\pm} 0.25$	$77.37 {\pm} 0.11$
RoBERTa-Large	79.02 ± 0.16	77.66±0.12

- Preprocessing and segmentation into sentences
- We modeled this as a text classification task with five classes :
 - Action (A), Information (I), Both (A/I), Code (C), None.
- We consider any sentence with Action or Information or Both as relevant and rest as irrelevant

Experiments - Flow Structure Prediction

	Models	CTFW		COR		MAM	
	1110 4015	PRAUC	F1	PRAUC	F1	PRAUC	F1
Baselines	Random Weighted Random BERT-NS RoBERTa-NS	- 0.5751 <u>0.5968</u>	50.49 37.81 26.12 32.44	- <u>0.5638</u> 0.5244	42.78 39.13 43.14 42.99	0.5873 0.6236	47.82 44.10 29.73 39.65
Ours	BERT-GCN RoBERTa-GCN BERT-GAT RoBERTa-GAT	0.7075 0.7221 0.5585 0.5692	69.26 69.04 61.93 64.51	0.6312 0.6233 0.4553 0.4358	58.13 61.44 41.93 24.74	0.6888 0.6802 0.4568 0.4585	63.75 65.73 62.18 59.55

- PRAUC scores for both LM-GCN versions are better than baseline next sentence prediction task (LM-NS)
- LM-GAT underperforms

Effect of Graph Connection Type

	W_3	$\overline{W_4}$	$\overline{W_5}$	W_{all}
CTFW-SC	0.6630	0.5985	0.5733	0.5590
CTFW-L	0.7221	0.6520	0.6150	0.3962
CTFW-EP	0.3700	0.2900	0.2400	0.0700
COR-SC	0.5639	0.5129	0.4731	0.5580
COR-L	0.6456	0.6012	0.5274	0.4034
COR-EP	0.3700	0.3100	0.2600	0.1700
MAM-SC	0.6528	0.6219	0.6091	0.6718
MAM-L	0.6888	0.6362	0.6137	0.4161
MAM-EP	0.4500	0.3700	0.3200	0.1500

- For each Window, best model performs better than the baseline PRAUC scores (EP)
- Linear connections works better with smaller windows
- Semi-complete connections works better for W_{all}

Effect of Graph Layers

• Single GNN layer have better performance

• Increasing graph layers reduces the performance across all 3 datasets

Conclusion

- Introduced a new procedural sentence flow extraction task from natural language texts
- We create a sufficiently large procedural text dataset in the cybersecurity domain (CTFW) and construct structures from the natural form
- We empirically show that this task can be generalized across multiple domains with different natures and styles of texts

Thank You !!!

Contacts : Kuntal Kumar Pal, Kazuaki Kashihara, Pratyay Banerjee, Swaroop Mishra, Ruoyu Wang, Chitta Baral

- Paper : https://arxiv.org/abs/2105.14357
- **Code** : <u>https://github.com/kuntalkumarpal/FlowGraph</u>
- **Email**: {kkpal, kkashiha, pbanerj6, srmishr1, fishw, chitta}@asu.edu